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THE POSSIBILITY OF STRUCTURALLY STABLE GLOBAL OSCILLATORS OCCURRING 

WHEN DISSIPATIVE FORCES ARE INTRODUCED INTO 

DYNAMIC SYSTEMS ASYMPTOTICALLY STABLE IN THE LARGE* 

S.N. KIRPICHNIKOV and A.G. STEPANOV 

It is shown that when dissipative interactive forces (of the viscous 
friction type) are introduced between two thick, mechanical autonomous 
systems asymptotically stable in the large, the transformation of these 
systems into a structurally stable global oscillator becomes possible. 
However, the dimensionality of the configurational space of each such 
system must be at least two. 

We study dynamic systems of the form 

Z" = F (z. z'), + = R” (0 

where Rn is a Euclidean n-dimensional vector space, and a dot denotes differentiation with 
respect to the independent variable t. The spaces Rn= {z},R”= {Cc, a’)) are called the con- 
figurational and phase space of system (1) respectively. The tangent spaces of Euclidean 
vector spaces are identical with the above spaces. In (1) F:RPn -Rn= (I’} represents a 
smooth mapping. The formulation of system (1) is equivalent to the process of specifying, 
in its phase space, the vector field f : R*“- Rsn, (z, 2’) -+ (z’, F (2, 2’)). The dynamic system cor- 
responding to the field f is denoted by r'=f(z). z= (2, 2') EB*". 

Let us introduce some definitions (see e.g. /l, 2/). The structural stability of the 
system means that the equation I'= fa(z) has the same structural properties as the equation 
2' = f (2). provided that the vector field f,, is derived from f using the Cl-perturbation of 
f. We shall further call the dynamic system (1) globally asymptotically stable if it has a 
unique position of equilibrium Z= z~,z'= 0 and any solution tends, as t-co, to this 
position. Finally, we shall call the dynamic system (1) a global oscillator (GO) if it has 
a non-trivial periodic solution P, and any other solution except the set C of zero measure 
in the phase space tends to P as t+oo. Here we consider only the GO's in which the sets 
E are discs of positive codimensionality, smoothly imbedded in BP" = ((2,~')) , and every sol- 
ution on C tends to a unique position of equilibrium &,O). 

It will also be convenient to use mechanical terminology, calling Eqs.(l) the equations 
of motion of a mechanical system and F,z',x" the vectors of forces, velocities and acceler- 
ations, respectively. 

Let a dynamic system 
2" = S (z, I'), (3, z') E Rx” (2) 

be structurally stable and globally asymptotically stable. 
Connecting two such initially mutually independent identical dynamic systems (2) by 

means of the dissipative, linearly interacting forces of the "viscous friction" type, we shall 
consider the following dynamic system: 

where w is a (nxn)-matrix characterising the dissipative forces. We can assume, without 
loss of generality, that the matrix is diagonal and non-negative. 
and is defined in the phase space R4n = ((z,, +‘, z,, =I’)}. 

System (3) is of order 4n, 

The principal aim of this paper is to prove that system (3) can be a structurally stable 
GO for r>z. This explains the paradoxical effect which may be of major importance in 
theoretical mechanics and the mechanics of controlled motion. Thus, let two thick mechanical 
systems asymptotically stable as a whole be coupled by means of dissipative forces of inter- 
action proportional to the differences between the corresponding velocities. Such an inter- 
action has, by itself, a tendency to equalize these velocities. 
united system may "come to life", i.e. 

Nevertheless, the resulting 
it may Convert to a structurally stable GO. If the 

mechanical system (2) is acted upon only by potential, gyroscopic and definitely dissipative 
forces, then clearly, the effect in question 
itPrikl.Matem.Mekhan.,54,2,332-335,1990 

cannot appear. Thus the effect can only 
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materialize when the mechanical system (2) contains either non-conservative or acceleration 
forces, or forces of a more complex structure. 

A similar problem, in which two thick, globally asymptotically stable dynamic systems of 
general form I'= f(z), r=Rrn are coupled by a linear, "diffusion" type interaction, was studied 
in /3, 4/. It was found that the introduction of such an interaction can result in the 
appearance of a structurally stable GO, provided that the dimension of the phase space is 
m > 3. In order to use the method of /3j in the present paper, we had to alter its form 
considerably. This was necessitated by the fact that the class of autonomous mechanical 
systems discussed here is narrower than the class of dynamic systems of general form. 

Theorem. When n>2, there exist polynomial mappings S:R'"-Ra" and non-negative 
diagonal matrices p= diag(&,...,M, such, that 

A) the system of Eqs.(2) is structurally stable and globally asymptotically stable, 
B) the system of Eqs.(3) represents a structurally stable GO. 

Proof. Remembering that it is sufficient to consider the case n = 2, we shall prove 
that there exists a polynomial cubic mapping S:R4-RI, (a, t')~S(z,z') and a matrix B = diag (X1, 
La), hII> A, > 0, such that, firstly, the origin of coordinates t= I'= 0 is a thick global 
attractor of the system of equations e"= S(Z,I') in its phase space R" = ((5, I')), and secondly, 
the vector field 

corresponding to system (3) defines, in the phase space Rs = ((zl, z;, z8, +')), a structurally 
stable GO. 

The vector field (4) in the phase space R* is tangent to the four-dimensional plane 
A = I(~13 t', 2,. z,') I z1 = 22, 21’ = %‘I, . . h represents an integral manifold of dynamic system 
(3) corresponding to the vector fizli (4) , and at A itself the vector field has the form 

(z, z') r* (z', s (z, z')), z = t1 = z*, 5' = X1' = zl' (5) 
We regard the function S as odd, i.e. S(-z,--+')= -S(z,z') Then the four-dimensional 

plane Al = ((z;, z,', .7*. q') ( 21 = -.Q, zl’ = -z*‘) orthogonal to A will also represent an integral 
manifold of dynamic system (3). At the same time, the vector field (4) will transform, on 
the subspace Al itself, into the vector field 

(2, 2') !-+ (z', s (5, z') - 2p.z'), 2 = z1 = -ze, 2' = 2%' = --y' (6) 

This means that the problem has been reduced to that of determining an odd polynomial 
mapping S : R* + RI, (t, z') H S (z, z'), with the following properties: 

1) the origin of coordinates Z= z‘= 0 is a global attractor of the vector field (5) 
(z,‘z') ++ (z', S (2, 5')) in the space R' = ((5, z')). 

2) the vector field (6) (z. 5') H (z', S (2, 5') - 2p.s') determines the structurally stable GO 
in R' = ((z, z')), 

3) the subspace Al is a global attractor of the vectorfield (4) in the space R8 = ((11. 
21'1 ZP, %')1. 

Let us carry out, in the space R4=((z,z')} and the corresponding space R'= (z'), a 
linear change of coordinates, the Y= Az,y’=Az’, (2 x 2) -matrix A of which will be specified 
in more detail later. We shall seek the mapping S:R'-R* in the B (y,y’) coordinates in the 
form of a sum S== S,+ S8 of the linear mapping S,: R'-R', (y, Y')M S, (Y, I’) with matrix S,, and 
the cubic mapping S,: R" - RB, S, (y, Y') = (-(yl')*, 0) where Y = (Y’, y’), Y’ = (Y”, Y*‘). In the new co- 
ordinates y", y" of space R* the matrix u will become the matrix pl, similar to 11. Let us 

Put 

where k,, k,, b,,, b are positive constants. In (II, I') coordinates the differential equations 
corresponding to the vector field (6) (Y. Y’)-(Y’, S (Y,Y’)--~W.Y’). will become dyVdt = y”, dy“l& = 

-k,y’ -t b,,yl’ - (y”Y 
dyz/dt = ya’, dy=‘ldt = --kg% - b,,y” (0 

The two-dimensional plane R" = {(Y', Y")) in the space R" = {(Y, y') = (y'. y'. y*', y")) will 
be an attractor of the vector field (6), and in the plane itself the field equations will be 
equivalent to the Rayleigh equation 15, 6/ Y'" = -k,y’+ blly” - W’)*. Thus if the matrix &- 

2% has the form (7), then the vector field (I/, Y‘)H (y', S (y. Y’) - 2pl*y’) in the space F= 

((Y, Y')l 5 ((5, Z')l? equivalent to the field (6) in initial coordinates, will determine the 
structurally stable GO. 



We shall assume that the matrices S,, p1 have the form 

s,= -0"' 
u 

0 -b, b -(b,+bJ b _-k 
L -b -b* II 

, PI=+ 
II -b (b** - bJ 

(9) 

where b, b,, b* are certain constants and b,>O,b*>O. 
We now introduce the function 

S (I/'. Y*.,Y", Y *') = V* KY")* + (up')* + k, (Y')" + k, (Y')') (10) 

The followins relation will hold on the trajectories of the dynamic system determined 
by the vector field (5): 

dE/dt = -b, (y”)* - b, (y*‘)* - (y”)” < 0 (11)L 

Form this we conclude that by virtue of the theorem /7, a/ on asymptotic stability as a 
whole, the origin of coordinates (0,O) is a global attractor of the vector field (5). 

Now, provided that the following conditions hold: 

b** > b,, + b, + b* 
(b,, + b,) (b** - b*) < b* < (b,, + b,, + b, - b*)*/4 

(12) 

the matrix P, will have different real eigenvalues h,>b,>O. Moreover, a basis will exist 
in the space E* = ((Y', Y*)), of real eigenvectors of the matrix PI. We shall take the linear 
coordinates 2', z* in the space R*= {(y’,y*)) and $,1,&",z* in the space I+ = ((Y', Y'. I", Y")) I 
corresponding to this basis, as the initial coordinates x and 2, z'. The matrix A is a real 
matrix of transformation of the coordinates from Y,Y* -1 to $,a?. 

We shall consider, as an example, the matrices 

s, = n -k, 0 --e -_(i+e 3 
0 -3 7 (13) 

s,-21cI,= -d" O 1 O I/ 
u -_4 0 -15 

If c E (0, z/71, then all conditions formulated above will hold and when e= 217, one of 
the eigenvalues (X1= 40/7) will be positive and the second eigenvalue will be zero (11-O). 

Let us now check the last condition 3) and show that Al is an attracting manifold of 
the vector field (4). Taking into account the fact that 

21" + 2," = s (21, 2,') + s (z*, 4') (14) 

we obtain, in (y,y') coordinates, the following expression for the derivative of the function 
E (~1' + Y,', ~1' + Y*', ~1" + Y*", ~1" + Y,"') on the trajectories of the vector field (4): 

dE/dt = - bl(y,l'+ Y*l')*- b*(~,~+ Y?)*-(Y,~+ ue")((~l~)*+ (~*")s).u (15) 

and the equality sign applies here only when z,'= -2,'. When condition z,'= -z*' holds, the 
complete phase curves differ from the position of equilibrium, i.e., 
and can only lie in the plane Al 

the origin of coordinates, 
of the phase space E* = ((21, 21.9 x*, 2,'). Thus, in accordance 

with the theorem of /7, 8/ mentioned above we conclude that the plane Al is a global attrac- 
tor of the vector field (4). 

In conclusion we note that the position of equilibrium and the limit cycle constructed 
both have a hyperbolic structure. 

Notes. 10. We‘ must remember the possibility that the selfexcited oscillation discussed 
above may appear in complex, mechanically controlled systems, especially when the controls 
contain non-conservative (radial correction) forces or accleration forces. 
ant that the effect discussed here is also possible in the case when 

It is also import- 

0 (n > 2), i.e. 
;1, = h, = . . 

when the dissipation is introduced through a single channel only. 
. = Ll = 0, A., > 

20. There is no such model within the manthematical constructions used in the proof of 
the theorem for the case ?L=i. 
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THE SELFSIMILAR ASY~T~TI~ FORM OF ~O~-STAT~~~ARY VORTEX FLOWS" 

P.N. SVIRKUN~V and E.A. FEL'DE 

The hydrodynamic reaction of a viscous incompressible fluid filling a 
half-space to a rotational impulse applied to its surface is studied. 
It is established that for a non-stationary flow which occurs in this 
case, a stable, selfsimilar asymptotic form exists which is independent 
of the form of the initial perturbation. Asymptotic expressions are 
obtained for the universal distribution of the meridional velocity near 
the surface and et infinity. 

An analogue of Bernoulli's theorem is established for a class of 
non-stationary selfsimilar flows of an ideal fluid, and a corresponding 
integral of motion is obtained for the axisymmetric case. 

I. Consider a class of selfsimilar motions of a viscous incompressible fluid whose 
velocity field is determined by the expression 

“g/qU!(-+ (14 

Here r ~11~ is the radius vector, t is the time and y is the characteristic parameter 
of the problem with the dimensions of circulation. Solutions of this type may describe the 
asymptotic stage of the reaction of a liquid medium under the action of localized dynamic per- 
turbations. 

The system of Navies?Stokes equations for the dimensionless vector function u will trans- 
form, taking (1.1) into account, to the form 

(the operators V and h act on 8; P is the pressure and a is the density of the fluid). 

2. Let us first consider some general properties of the flows of type (1.1) in the limit 
when the viscosity becomes vanishingly small (v~Y). In this case the last term of the first 
equation of (1.2) can be neglected and we can rewrite this equation in a form analogous to 
Euler's equation in Gromeko-Lamb form 

0) x (u --%a) = - QD, n = p + Y&- Ys(a.u) 12.f) 
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